Rectangular tree of R1a (as pdf):

Polar tree of R1a (as pdf):

SNP | Age in years based on tree | Age in years based on STR111 variability |

M420 | 8000 | 8000 |

SRY10831.2 | 7798 | 7907 |

L664 | 4965 | 4375 |

Z645/Z647 | 6117 | 7294 |

Z283 | 5938 | 6751 |

M458 | 4625 | 3931 |

L260 | 3598 | 2411 |

CTS11962 | 4013 | 3069 |

L1029 | 4341 | 3078 |

Z280 | 5614 | 6050 |

Z92 | 4597 | 3996 |

CTS1211 | 5322 | 5381 |

P278 | 3719 | 2473 |

CTS3402 | 5046 | 4937 |

L366 | 3079 | 1038 |

L365 | 4095 | 2041 |

L1280 | 3281 | 2169 |

Z284 | 5063 | 4688 |

L448 | 4069 | 2857 |

CTS4179 | 3740 | 2212 |

L176 | 2956 | 1128 |

Z287/Z288 | 4908 | 4499 |

Z93 | 5989 | 6979 |

Z94 | 5795 | 6900 |

Z2121/Z2124 | 5322 | 5319 |

Z2122 | 4124 | 2457 |

Z2123 | 4781 | 3998 |

L657 | 4729 | 4131 |

Y7 | 3885 | 2197 |

Due to the size of the tree I split the tree into pieces.

**Edit May 25th 2013:**
I did not use a molecular clock, I just defined the total age of the whole tree at 8000 years BP.

Example Z94:

1. First I calculated the standard deviation (STDEV) for each STR within Z94+ individuals (Note: For STDEV I only used individuals with STR111 data).

2. I calculated the sum of all STR111 standard deviations (STDEV DYS393 + STDEV DYS390 + STDEV DYS19+ STDEV DYS391 + STDEV DYS385a + STDEV DYS385b + STDEV DYS426 + STDEV DYS388 + STDEV DYS439 + STDEV DYS389i + STDEV DYS392 + STDEV DYS389ii + etc.). For Z94+ individuals sum of all STR111 standard deviations is 51.307. The sum of all STR111 standard deviations within R1a (all individuals of tree N=547) is 53.823.

3. I figured out a correlation between the sum of all STR111 standard deviations within Z94+ individuals and the relative age of the SNP (see formula below).

4. Arbitrarily, I defined the total age of the whole tree at 8000 years BP. It might be better to see the age estimates as relative age estimates, not as absolute age estimates.

Age of SNP Z94=8000/(2.8863*e^(0.0588*(sum of all STR111 standard deviations within all 547 R1a individuals)))*(2.8863*e^(0.0588*(sum of all STR111 standard deviations within Z94+ individuals)))

Age of SNP Z94=8000*(2.8863*e^(0.0588*51.307))/(2.8863*e^(0.0588*53.823))

=8000*(2.8863*2.71828^(0.0588*51.307))/(2.8863*2.71828^(0.0588*53.823))

=8000*59.0/68.4

=6900

**:**

__Update 06/18/2013__
I generated a Z282+* STR67 tree.

Radial tree:

Rectangular tree: